Primary structure of rat liver elongation factor 2 deduced from the cDNA sequence

A.V. Oleinikov, G.G. Jokhadze and Yu.B. Alakhov

Institute of Protein Research, Academy of Sciences of the USSR, 142292 Pushchino, Moscow Region, USSR

Received 16 March 1989

A number of cDNA clones in summary encoding 700 amino acid residues from the N-end of rat liver elongation factor 2 (EF-2) and including 49 nucleotides of the 5'-untranslated mRNA region have been obtained. EF-2 cDNA clones were isolated from gradually constructed small (1000-5000 clones) specific cDNA libraries using the primer extension method for synthesis of the first cDNA chain. The complete primary structure of cDNA and protein EF-2 from rat liver was derived taking into account the primary structure of the 3'-terminal region EF-2 cDNA previously reported [(1986) Proc. Natl. Acad. Sci. USA 83, 4978-4982]. Comparison of this cDNA with hamster cDNA has shown that (i) the base sequences had a 89.7% homology while that of the 5'-untranslated region was 73%; (ii) there are two amino acid replacements in rat liver EF-2 as compared with hamster EF-2.

cDNA cloning; Elongation factor 2; Nucleotide sequence; Amino acid replacement; (Rat liver)

1. INTRODUCTION

Elongation factor 2 catalyzes translocation of a newly synthesized peptidyl-tRNA from the acceptor site to the donor site on the ribosome, thus preparing the protein-synthesizing complex for the next step of polypeptide chain elongation. This protein, consisting of a single polypeptide chain of $M_{\rm r}$ 90 000–100 000, was isolated from different eukaryotic cells. The primary structure of this protein from hamster embryo cells has been determined recently by cloning and sequencing full-sized EF-2 cDNA [1]. In the same study the primary structure of the C-terminal part (mRNA 3'-terminal region) of rat liver EF-2 was determined. Data have also been reported on cDNA cloning and determination of the primary structure of the C-terminal part of human EF-2 [2]. We have previously reported the

Correspondence address: A.V. Oleinikov, Institute of Protein Research, Academy of Sciences of the USSR, 142292 Pushchino, Moscow Region, USSR

The nucleotide sequence presented here has been submitted to the EMBL/GenBank database under the accession no. Y07504 cloning of cDNA coding for the central part of rat liver EF-2 [3]. In this study we have cloned and sequenced DNA complementary to the 5'-terminal region of EF-2 mRNA, and summarize the results on cloning and the primary structure of rat liver EF-2 cDNA. Thus, we have derived the complete structure of cDNA and protein EF-2 taking into account published data on the 3'-terminal region of rat liver EF-2 cDNA [1] and have compared it with the full-sized cDNA and protein EF-2 from hamster [1]. We also discuss the use of specific libraries for rapid cloning and determination of the complete primary structure of mRNA.

2. MATERIALS AND METHODS

2.1. Materials

We used dNTP (Pharmacia), restriction endonucleases, the 5'-end-labelling kit (Boehringer-Mannheim), [³H]dCTP (32 Ci/mmol), RNasin, *E. coli* DNA polymerase I, ribonuclease H, T₄ DNA polymerase, T₄ DNA ligase, M13 cloning kit, M13 sequencing kit, terminal deoxynucleotidyltransferase (Amersham), and avian myeloblastosis virus reverse transcriptase (Vostok, USSR).

2.2. Synthesis of oligonucleotides

Synthesis was performed on DNA synthesizers: Gene

Assembler (Pharmacia; oligo II, III, VI, VII) and System I (Beckman; oligo I, IV, V). The following oligonucleotides were synthesized:

```
5' TGGATGGCATCAGCATGCAGGGGTCTC 3'
oligo I
oligo II
          5' TCCTTGATCTCATTCAG
oligo III
          5' GATCATCTGTAGCAGGGCGTC
                                           3
                                           3,
oligo IV
          5' CCCTCCTTGTCCTTGTCC
          5' ACPTACATQTCNGCPAAQTG
oligaV
          5' TCCATQTTPTTCATCAT
oligo VI
oligo VII 5' TTQTTCATCATPTCQTC
where P = G or A, Q = C or T, N = A, T, G, C.
```

2.3. Synthesis and cloning of specific cDNA

Rat liver RNA was isolated by phenol deproteinization [4]. The poly(A)+ mRNA fraction was obtained according to [5]. First-strand synthesis was carried out in 50 μ l with 10 μ g poly(A)+ mRNA as described in [6] except that 140 mM KCl was used and specific oligonucleotides (oligo I, III, V, VI or VII) were chosen as primers instead of oligo(dT). Fast annealing of the primer with the template was carried out as in [7]. Secondstrand synthesis was carried out according to [6] and mediated by T₄ DNA polymerase [8]. After the reaction, the enzyme was inactivated by heating to 70°C for 10 min and the doublestranded cDNA (ds cDNA) was precipitated twice with spermine [9] to remove protein, dNTP and short (<100 bp) cDNA fragments. ds cDNA was inserted either into plasmid pBR322 at the PstI site by the homopolymer tailing method [8] (hybrid plasmids series pEN) or into plasmid pUC8 at the Smal site by blunt-end ligation (pUC series of hybrid plasmids). Ligation was carried out in 10 µl with 2.5 units T₄ DNA ligase, 50 ng dephosphorylated vector and 3 ng ds cDNA [8]. After transformation of competent E. coli MC 1061 cells, we obtained in both cases about 1000-2000 clones per ng cDNA. The background of nonhybrid clones was 10-15%.

2.4. Isolation of EF-2 cDNA clones

EF-2 cDNA clones were isolated from the screened libraries by hybridization 541 filters with 5'-32P-labelled oligonucleotides II, IV or VI according to [10] at the appropriate temperature [11]. Hybridization with the *PstI-EcoRI* cDNA fragment from plasmid pUC04-20 N1 was performed as in [10].

2.5. cDNA primary structure determination

The cDNA primary structure was determined by the method of Sanger et al. [12] as modified for the ds plasmid [13] using oligonucleotides II, IV as primers or standard direct and reverse M13 primers (for sequencing pUC plasmids) and after recloning of the cDNA restriction fragments in phage M13 using the Amersham M13 cloning kit. Further, the single-stranded DNA was sequenced with the Amersham sequencing kit.

3. RESULTS

We have previously described in detail the procedure for isolation and sequencing of clone pEN241b and clones of the series pUC01-21 [3]. In brief, their cloning was performed as follows. Oligo I and II were designed according to the published primary structure of the 3'-terminal

region of rat liver EF-2 cDNA [1] (fig.1b). Using oligo I as a primer, we synthesized and then cloned the specific cDNA. Of the 1200 clones of this library, four EF-2 cDNA clones were isolated after hybridization with probe oligo II (fig.1c). The pEN241b insert was sequenced as in [12,13]. Then we synthesized oligo III and IV (fig.1c) used as the primer and probe, respectively, 40 clones of EF-2 cDNA (clones series pUC01-21, fig.1d) were isolated from an 8000 clone library prepared in the same way. From an analysis of the primary structure of cDNA from these clones and homologous hamster EF-2 cDNA [1], we concluded that synthesis of the first strand of cDNA was interrupted at approximately the same point in mRNA, immediately before the GC-rich region (bases 750-716 in [1], fig.1a) and, consequently, that there exists a strong stop signal for reverse transcriptase under the given reaction conditions

Oligo V and VI (fig.1b) were synthesized to clone the 5'-terminal region and to test the possible use of a highly degenerate oligonucleotide as an effective specific primer. The 64-fold degenerate 20-nucleotide-long oligo V designed according to the amino acid sequence region (residues 227-233)

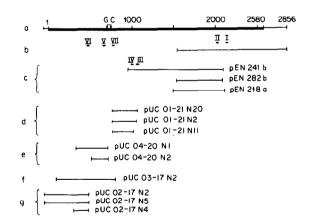


Fig.1. Scheme of cloned EF-2 cDNA. (a) Full-sized EF-2 cDNA from hamster cells (taken from [1]). Bold line shows the coding part, arrows indicate the GC-rich region; (b) rat liver EF-2 cDNA obtained by Kohno et al. [1]; (c) EF-2 cDNA from clones of the pEN series; (d) EF-2 cDNA from clones of the pUC01-21 series. cDNA of three clones of the 40 studied are shown; (e) EF-2 cDNA from the series pUC04-20. cDNA of two clones of the three studied are shown; (f) EF-2 cDNA from clone pUC03-17 N2; (g) EF-2 cDNA from clones series pUC02-17. cDNA of three clones of the four studied are shown. Roman numerals I-VII designate the corresponding oligonucleotides.

of the homologous protein EF-2 from hamster cells [1] was used as a primer. The 4-fold degenerate 17-nucleotide-long oligo VI (synthesized according to the region of amino acid residues 156-161 of hamster EF-2) was used as a probe. After screening the specific library of 4000 clones we isolated one EF-2 cDNA clone (pUC04-20 N1, fig.1e) with a 390 bp insert. Using this insert as a probe we obtained two more EF-2 cDNA clones from the same library with inserts of about 210 bp (fig.1e). All these clones were sequenced by a modified method of Sanger et al. on ds plasmids [13].

Further, the 8-fold degenerate oligo VII synthesized according to amino acid residues 254-259 of hamster EF-2 (synthesized prior to determination of the primary structure of this fragment of rat liver EF-2 cDNA) was used as a primer. Oligo VII is complementary to EF-2 mRNA directly before the stop signal sequence (fig.1b) and we assume that in this case the probability of the enzyme passing this site will be higher. Indeed, screening of the library obtained, comprising 4000 clones, with the Pst I-EcoRI fragment of pUC04-20 N1 revealed eight clones of EF-2 cDNA (fig.1f). All contained cDNA inserts of about 750 bp and were sequenced according to Sanger et al. [12].

Oligo VI was also used as a primer, four EF-2 cDNA clones (fig.1g) being isolated from the pUC02-17 library obtained consisting of 8000 clones. One contained a cDNA insert of 200 bp length and the others had inserts of about 530 bp and included a 5'-untranslated region of EF-2 mRNA. These cDNA inserts were sequenced within ds plasmids [13].

4. DISCUSSION

Specific priming of cDNA is sometimes used for cloning of 5'-terminal mRNA regions after partial clones isolated from total cDNA libraries have been obtained and sequenced [14,15]. We believe that this method can be used for rapid cloning of the full-sized cDNA if information on mRNA or the protein in some internal part is available, which is often the case. This method greatly facilitates isolation of DNA clones complementary even to a low-copy template due to enrichment of the cDNA preparation with the appropriate cDNA. Thus, to obtain 1 clone of the rat liver EF-2 cDNA it was

necessary to study 200-1000 clones of the specific library, whereas Kohno et al. [1] employed a total library of 50 000 clones to obtain one clone of the same EF-2 cDNA. This method is very economical due to the small dimensions of libraries (to create a 4000 clone library 1-3 ng cDNA is sufficient). Our results on isolation of clones of the series pUC04-20 indicate that even highly degenerate oligonucleotides can serve as effective primers for synthesis of the specific cDNA to be cloned. The 3'-terminal mRNA region can be cloned in the same way using an oligonucleotide complementary to the non-coding strand as a primer in synthesis of the cDNA second strand after the first strand of the total cDNA has been obtained. In this case, an enriched cDNA preparation (in comparison with the total one) must also result [16].

Since cDNA priming using oligo III located at about 300 bases from the stop signal (fig.1c) yielded no clones containing cDNA beyond the stop signal, we primed cDNA immediately before it (oligo VII, fig.1b). Indeed, it turned out that in this case cDNA synthesis proceeded efficiently enough and extended almost to the 5'-end of mRNA. The reasons for this remain unclear. It may be that in the case of priming with oligo III, the mRNA after denaturation has time to assume a stable secondary structure during synthesis before the stop signal, whereas in priming with oligo VII, the enzyme passes this point before the formation of the stable secondary structure or the already hybridized oligonucleotide itself hinders the formation of such a structure.

Determination of the primary structure of the resulting EF-2 cDNA clones (fig.1) allowed us to represent the complete structure of cDNA coding for rat liver EF-2 (fig.2), taking into account the published primary structure of the 3'-terminal region of rat liver EF-2 cDNA [1], and to deduce the complete primary structure of protein EF-2 (fig.2). Analysis of these structures and those of hamster EF-2 showed that (i) the nucleotide sequences of overlapping parts of rat EF-2 cDNA as reported by Kohno et al. and in this study completely coincide; (ii) the nucleotide sequences of rat and hamster show high homology (89.7%); almost all base replacements are located in the third codon position; (iii) two amino acid replacements have been determined: Glu 441 and Pro 246 in hamster are replaced by Asp and Ala residues in rat, respec-

		CGCA	GCCG	CAGC	CATO	GTCG						G O				T	•••	<u>.ç.</u>	T	
rat				G	~	-4 C					T								CACC	-1
Met	Val	Asn	Phe	Thr	Val	Asp	Gln	Ile	Arg	Ala	Ile	Met	GAC ASP	Lys C	Lys G	Ala	Asn	Ile	CGG Arg	60 20
AAC Asn	ATG Met	TCA Ser	Val	ATC Ile	GCT Ala	CAC H1s	GTG Val	GAC ASP	CAC H1S	GGC Gly	AAG Lys	TCC Ser	ACG Thr	TTG Leu	ACC	GAC Asp	TCC Ser	CTT	GIG Val	120 40
TGC Cys	AAG Lys	GCT Ala	GGC	ATC	ATC	GCC Ala	TCT Ser	GCC Ala	OGA Arg	GCC Ala	GGT Gly	GAG Glu	ACA Thr	CGC Arg	TTC Phe	ACT Thr	GAC Asp	ACT	CGA Arg	180 60
AAG Lys	GAT Asp	GAG Glu	GAG Gln	GAG Glu	OGC	TGC Cys	ATC Ile	ACC	ATC Ile	AAG Lys	TCC Ser	ACT	GCC Ala	ATC	TCC Ser	CIC Leu	TIC	TAT Tyr	GAG Glu	240 80
CIC	TCC Ser	GAG Glu	AAC Asn	GAC Asp	CTG Leu	AAC Asn	TTC Phe	ATT Ile	AAG Lys	CAG Gln	AGC Ser	AAG Lys	GAT Asp	GGC Gly	TCT Ser	GGC Gly	TIC	CTC Leu	ATC 11e	300 100
AAC Asn	CIC	ATT	GAC Asp	TCT	CCA Pro	GIY GIY	CAT H1S	GIG Val	GAC ASP	TTC Phe	TCC Ser	TCA Ser	GAG Glu	GTG Val	ACC	GCT Ala	GCT Ala	CTG Leu	CGT Arg	360 120
GTC Val	ACT	GAT Asp	GGA Gly	GCA Ala	CIG	GIG Val	GIG Val	GIG Val	GAC Asp	TGT Cys	GTG Val	TCT Ser	GGT Gly	GIC Val	TGT Cys	GIG Val	CAG Gln	ACA Thr	GAG Glu	420 140
ACA Thr	GTG Val	CTG Leu	CGG Arg	CAG Gln	GCC Ala	ATC Ile	GCT	GAG Glu	CGC Arg	ATC Ile	AAG Lys	ccc Pro	GIG Val	CTG Leu	ATG Met	ATG Met	AAC Asn	AAG Lys	ATG Met	480 160
GAC Asp	CGG Arg	GCC Ala	CIG	CIG Leu	GAA Glu	CTG Leu	CAA Gln	CTG Leu	GAG Glu	CCT Pro	GAG Glu	GAG Glu	CIC Leu	TAC Tyr	CAG Gln	ACC Thr	TTC Phe	CAG Gln	CGC Arg	540 180
ATC 11e	GIG Val	GAG Glu	AAC Asn	GTC Val	AAT ASD	GTC Val	ATC Ile	ATC Ile	TCC Ser	ACC Thr	TAT Tyr	GGC Gly	GAG Glu	GGC Gly	GAG Glu	AGT Ser	GGA Gly	CCC Pro	ATG Met	600 200
						C CCT Pro														660 220
TGG	GCC Ala	TTC	ACA Tor	CTG Leu	AAG Lys	CAG Gln	TTT Phe	G GCA Ala	GAG Glu	ATG Met	TAT Tyr	GTG Val	GCC Ala	AAG LVS	TTT Phe	GCA Ala	GCC Ala	AAG Lvs	GGT	720 240
GAG	GGC	CAG	CIG	G GGT	GCA	GCT	GAG	CGG	всс	AAG	AAG	G GTA	G GAA	GAC	ATG	ATG	AAG	AAG	CTG	780
		T				Ala T GAC	С		T		A				С	T	C		T	260 840
Trip T	Gly	Asp	Arg	Tyr G	Phe A	ASP	Pro	Ala T	Asn	Gly	Lys	Phe	Ser C	Lys	Ser	Ala	Asn	Ser	Pro	260
Asp	GIY	Lys	Lys	Leu	Pro	Arg	Tin	Pne	Cys	Gln	Leu G	Ile	Leu	Asp	Pro T	Ile	Phe	Lys	Val T	900 300
						TIC Phe														960 320
ATC Ile	AAG Lys	CTG Leu	gac Asp	AGT Ser	GAG Glu	GAC ASP	AAG Lys	gac Asp	AAG Lys	GAG Glu	GGC Gly	AAA Lys	CCA Pro	CTG Leu	CIG CIG	AAG Lys	GCT Ala	GIG Val	ATG Met	1020 340
	Arg			Pro	Ala	GGT Gly														1080 360
CCG	GIC	ACT	GCA	CAG	LYS	TAC Tyr	Arg	TGT	GAG Glu	Leu	CIG	TAC Tyr	GAG Glu	33C G1y	CCA Pro	CCT Pro	GAT	GAC ASP	gag Glu	1140 380
GCC Ala	GCC Ala	ATG Met	GOT	ATT	AAG Lys	AGC Ser	TGC Cys	GAĆ Asp	CCC Pro	AAA Lys	GGC Gly	CCC Pro	CTÁ Leu	ATG Met	ATG Met	TAC Tyr	ATC	TCC Ser	DAA Lys	1200 400
				Ser		AAA Lys														12 6 0 420
GIG Val	TCC Ser	ACA Thr	GIY GGT	CIG	AAG Lys	GTC Val	COG	ATC 11e	ATG Met	ggc Gly	occ Pro	AAC Asn	TAT	ACA Thr	OCT Pro	GGG Gly	AAG Lys	AAG Lys	GAG Glu	1320 440

Fig. 2. Primary structure of rat liver EF-2 cDNA. Bases above the nucleotide sequence of rat EF-2 cDNA show the differences in the base sequence of hamster EF-2 cDNA (according to [1]). **A and A*T denote amino acid replacements in rat EF-2 as compared with hamster EF-2. Dots indicate the nucleotides complementary to the 3'-end of 18 S rRNA. (\blacktriangledown) 5'-end of rat liver EF-2 cDNA from [1]. (\blacktriangledown) 3'-end of cDNA pEN241b. The 3'-untranslated region of rat liver EF-2 cDNA has not been reported in [1].

##A					С			. A		_ <u>c</u>					g			_ G	_ A	
		TAC Tyr																		1380 460
		GAT ASP																		1440 460
AAG Lys	ACC	GGC Gly	ACC	ATC 11e	ACT	ACC Thr	TTT Phe T	GAG Glu	CAC H1s	GCT Ala	CAC His	AAC	ATG Met	CGG	GIG Val	ATG Met	AAG Lys	TTC Phe	AGC Ser	1500 500
		CCT Pro C																		1560 520
		GI Y																		1620 540
		GAG U1D																		1680 560
Leu	Glu	DAD Glu G	Asp C	His	Ala	Cys A	Ile	Pro	Ile G	Lys C	Lys G	Ser	Asp	Pro G	Val C	Val	Ser	Tyr	Arg	1740 580
Glu C A	Tar T	GTC Val T	Ser	Glu	Glu	Ser C	Asn	Val	Leu	Cys	Leu	Ser G	Lys C	Ser	Pro	Asn	Lys C	His	Asn	1800 600
Arg	Leu G	TAC	Met T	Lys	Ala	Arg	Pro	Phe	Pro A	Asp C	Gly A	Leu C	Ala T	Glu A	ASP T	Ile	Asp	Lys C	Gly A	1 86 0 62 0
Glu	Val	Ser	Ala	Arg	Gln	Glu	Leu	Lys	Ala	Arg	Ala	Arg G	Tyr	Leu	Ala	Glu	Lys C	Tyr	Glu	1920 640
Trp	Asp T	Val	Ala T	Glu	Ala	Arg	Lys	Ile	Trp	Cys	Phe	Gly	Pro A	Asp	Gly	Thr	Gly	Pro	Asn	1980 660
Ile	Leu C	ACC	Asp	Ile	Thr	Lys	Gly	Val	Gln	Tyr	Leu C	Asn	Glu	Ile	Lys	Asp	Ser	Val	Val	2040
Ala C	C G1 A	Phe	Gln	Trp	Ala	Thr	Lys	Glu A	Gly	Ala	Leu	Cys	Glu	Glu	Asn	Met	Arg	Gly	Val	2100 700
Arg	Fne T	Asp	Val	H1s T	Asp T	Val T	Thir T	Leu G	His	Ala	Asp	Ala	Ile T	H1s	Arg	Gly	Gly	Gly	Gln	2160 720
Ile	He	Pro	Thr	Ala	Arg	Arg	Cys	Leu	Tyr	Ala	Ser	Val A	Leu G	Thr C	Ala	Gln T	Pro C	Arg	Leu C	2220 740
Met	Glu	Pro G CIC	Ile	Tyr	Leu	Val	Glu	Ile	Gln G	Cys	Pro	Glu	Gln	Val	Val G	Gly	Gly	Ile	Tyr	2280 760 2340
Gly	Val T	Leu	Asn	Arg	Lys	Arg	Gly T	His A	Val	Phe C	Glu G	Glu	Ser	Gln T	Val T	Ala A	Gly	Thr	Pro G	780 2400
Met C	Phe	Val	Val	Lys	Ala	Tyr A	Leu T	Pro	Val	As n	Glu	Ser	Phe C	Gly	Phe	Thr	Ala	Asp T	Leu	800
Arg	Ser	AAC ASD	Thr G	GIA	Gly	Gln	Ala	Phe	Pro T	Gln	Cys	Val	Phe G	QZA D	His	Trp	Gln	Ile	Leu	820
Pro	Gly	GAC Asp T	Pro	Phe	Asp	Asn	Ser	Ser	Arg A	Pro	Ser	Gln	Val	Val	Ala	Glu	Thr	Arg		840 2577
		GGC																TWG		858

tively; (iv) homology in the 5'-untranslated region is considerably lower (73%) due to large differences just at the 5'-end (fig.2). In the 5'-untranslated region of rat liver mRNA, as in hamster EF-2 mRNA, there is a site complemen-

tary to the 3'-end of 18 S rRNA and a eukaryotic consensus (-4) CACC ATG(3) (fig.2).

An interesting feature of pUC02-17 N2, 5 clones was revealed on cloning (fig.1g). It transpired that the growth rate of these clones containing cDNA

from position -49 to position 480 in the sense orientation in site SmaI of plasmid pUC8 (but not in-frame with the β -galactosidase gene) is about an order lower than that of clones containing other EF-2 cDNA inserts or without inserts at all (not shown). This cDNA fragment encodes about 160 amino acid residues from the N-end of EF-2, and Kohno et al. [1] refer to this fragment as the GTP-binding region. This effect is being currently studied.

REFERENCES

- [1] Kohno, K., Uchida, T., Ohkubo, H., Nakanishi, S., Nakanishi, T., Fukui, T., Ohtsuka, E., Ikehara, M. and Okada, Y. (1986) Proc. Natl. Acad. Sci. USA 83, 4978-4982.
- [2] Rapp, G., Mucha, I., Einspanier, R., Luck, M. and Scheit (1988) Biol. Chem. Hoppe-Seyler 369, 247-250.
- [3] Oleinikov, A.V., Jokhadze, G.G. and Alakhov, Yu.B. (1989) Bioorg. Khim., in press.
- [4] Shore, G.C. and Tata, J.R. (1977) J. Cell Biol. 72, 726-735.

- [5] Aviv, H. and Leder, P. (1972) Proc. Natl. Acad. Sci. USA 69, 1408-1414.
- [6] Gubler, U. and Hoffman, B.J. (1983) Gene 25, 263-269.
- [7] Merrit, S.C., Tschudi, C., Konigsberg, W.H. and Richards, F.F. (1983) Proc. Natl. Acad. Sci. USA 11, 1536-1540.
- [8] Maniatis, T., Fritsch, E.F. and Sambrook, J. (1982) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
- [9] Hoopes, B.C. and McClure, W.R. (1981) Nucleic Acids Res. 9, 5493-5404.
- [10] Gergen, J.P., Stern, R.H. and Wensink, P.C. (1979) Nucleic Acids Res. 7, 2115-2136.
- [11] Meinhoth, J. and Wahl, G. (1984) Anal. Biochem. 138, 267-284.
- [12] Sanger, F., Nicklen, S. and Coulson, A.R. (1977) Proc. Natl. Acad. Sci. USA 74, 5463-5467.
- [13] Hattori, M. and Sakaki, Y. (1986) Anal. Biochem. 152, 232-238.
- [14] Noda, M., Furutani, Y., Takahashi, H., Toyosato, M., Hirose, T., Fnayama, S., Nakanishi, S. and Numa, S. (1982) Nature 295, 202-206.
- [15] Nishimura, Y., Rosenfeld, M.G., Kreibich, G., Gubler, U., Sabatini, D.D., Adesnik, M. and Andy, R. (1986) Proc. Natl. Acad. Sci. USA 83, 7292-7296.
- [16] Houghton, M., Stewart, A.G., Doel, S.M., Emtage, J.S., Eaton, M.A.W., Smith, J.C., Patel, T.P., Lewis, H.M., Porter, A.G., Birch, J.R., Cartwright, T. and Carey, N.H. (1980) Nucleic Acids Res. 8, 1913-1931.